
AIDS and a risk-based model
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we will buildup the equations for our risk-baaed model of AIDS through
successive modifications of the basic equation of epidemiology, the equa-
tion of mass action. Its simplest form is given by

(1)

where I(t) is the number infected, N is the total population and a is a constant.
Equation 1 describes the spread of HIV infection by random sexual contact among a
sexually active population of fixed size N. As explained in the main text, if a popu-
lation mixes homogeneously, this equation gives rise to an initial exponential growth

As the number infected becomes comparable to the total population the growth
rate will decrease, so we rewrite Eq. 1 to show that time dependence:

(2)

ent relative growth rate of the number infected.
To describe the AIDS epidemic over long times, we must account for individ-

uals who eventually develop AIDS and die. Thus the total population will not re-
main constant but will change with time. We divide the population into three sectors:
the sexually active, uninfected susceptible S(t); those infected with HIV who do
not have AIDS I(t); and people with AIDS A(t). We assume the susceptible and
the infected are sexually active (and therefore can infect others) but that those with
AIDS are not. Thus the sexually active population N(t) is equal to S(t) + I(t). More-
over, we assume that people mature, or migrate, into the sexually active suscepti-
ble population and retire from it at a constant relative rate µ, so that in the absence
of AIDS the susceptible population would remain constant at the value SO, that is,
N(t) = S(t)= S. in the absence of HIV.

Now we can write down a set of rate equations for changes in S(t),I(t) and
A(t) with time.

The rate of change in the number infected is like Eq. 2 except the right-hand
side includes negative terms that account for decreases due to conversion to AIDS at

(3)

The number of uninfected susceptible increases through maturation of “juve-
niles” at a rate µS0. and decreases through-aging at a rate µS(t) and through infection

(4)
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The number of people with AIDS increases through conversion of infecteds at a

(5)

The accompanying block diagram illustrates the inputs and outputs to each of the
three sectors of the population.

The most important assumptions in any model of AIDS are embedded in the

sented, all members of the population are assumed to be equal in their susceptibility
and the rate of infection per susceptible is given by

(6)

where the constant i is the probability of infection per sexual contact, the constant
c is the average number of sexual contacts per partner, the constant p is the average

population.
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Note that this simple model produces exponential growth at the start of the epi-
demic. All members are equally at risk (homogeneous mixing) and the probability of
infection per contact i remains constant throughout the years of infection.

We will now modify the simple model defined by Eqs. 3-6 to account for two
crucial aspects of the AIDS epidemic. First, since AIDS takes many years to develop
and the infectivity during the period of infection may vary in time, we introduce an

who are very active sexually and who change partners frequently have a greater risk
of becoming infected, we introduce the variable r, which quantifies the level of risky
behavior in the sexually active population. In this model, r is defined as the number
of new partners per year.

Using the two new independent variables T and r, we distribute l(t), S(t) and
A(t) over risk behavior and/or time since infection. (See the definitions in the block
diagram.) In addition, the constant S0 is the integral of an equilibrium distribution

We can now write down the equations of our risk-based model that correspond
to Eqs. 3–5. Equation 3 for the infected population is replaced by Eqs. 7a and b.
Equation 7a specifies that the rate at which people of risk r are becoming infected

infection, and the rate at which they leave the population is proportional to µ.

Equation 8 for the susceptible has a structure similar to that of Eq. 4 except

(8)

Equation 9a says that the rate at which AIDS cases are being diagnosed at time

of AIDS cases due to death.

the relative rate at which susceptible with r partners per year get infected. We gen-
eralize Eq. 6 to include variation in the degree of sexual contact between individuals
with different risk behaviors as well as variation in infectiousness with time since

(10)
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where c(r, s) is the average number of sexual contacts in a partnership between a

Los Alamos Science Fall 1989



AIDS and a risk-based model

and p(t, r, s) is the fraction of the partners of a person with risk r who have risks.
The total number of sexually active people with risk s is given by N(t, s) = S(t, s) +

Equations 7-10 describe the basic structure of our risk-based model. It dif-
fers from the well-known model of Anderson and May in one major respect-the

population, that is, that partners are chosen purely on the basis of availability. Then
p(t, r, s), the fraction of the partners of a person with risk r who have risk s, is just
the proportionate mixing value:

(11)

They also assumed that the average number of sexual contacts per partner and the

(12)

of gonorrhea) yields exponential growth for the early stages of the epidemic.
We suggest that the assumption of homogeneous mixing is sociologically unre-

alistic. Instead, we build into our model a general form for p(t, r,s) that allows for
biased mixing among the population. That is, p(t, r,s) includes an acceptance func-
tion, f(r, s), that specifies the frequency at which an individual with risk behavior r
chooses a partner with risk behaviors. When the acceptance function f(r, s) is 1,
we return to homogeneous mixing. When f(r, s) is a narrow Gaussian, for example,

selves. This latter assumption is presented in the main text and yields the power-law
growth in AIDS cases seen in the data.

For completeness we give the general form of p(t, r, s):

This complicated function satisfies three necessary properties:
1. The number of partners with risk behavior s chosen by people with risk behavior
r is equal to the number of partners with risk behavior r chosen by people with risk
behaviors; that is,

rN(t, r)p(t,r,s) = sN(t,s)p(t,s,r). (14)

2. People with risk behavior r have r partners per unit time; that is,

(15)

3. The fractions p(t,r,s) are positive.
In order to study the effects of different mixing patterns on the growth of the

epidemic, we have chosen various forms for the acceptance function f(r, s) and then
solved Eqs. 7–9 numerically. The results are presented in “Numerical Results of the
Risk-Based Model of AIDS.” Also presented there are numerical solutions for differ-
ent assumptions about infectiousness from time since infection. ■
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